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Abstract

As part of the ’Predicting Neurological Recovery from
Coma After Cardiac Arrest: The George B. Moody Phys-
ioNet Challenge 2023’, our team DEIB POLIMI explored
the predictive power of graph topological features ex-
tracted from brain connectivity networks, computed us-
ing electroencephalogram (EEG) recordings. We inves-
tigated the performance of two different phase synchro-
nization measures on the delta band to compute channel-
wise EEG connectivity, the weighted phase lagging index
and the corrected imaginary phase locking value (ciPLV).
Using ciPLV, we computed patients’ functional brain net-
works and characterized their topology by extracting cen-
trality, efficiency, and clusterization graph measures, re-
sulting in 60 features. These features were then concate-
nated with the mean synchronization of each channel, and
patients’ clinical information, for a total of 85 features.
Using a random forest model we achieved an official Chal-
lenge Score of 0.431 (ranked 23rd out of 36 teams) on the
hidden test set.

1. Introduction

The George B. Moody PhysioNet Challenge 2023 [1, 2]
proposed the participants to develop an automated open-
source algorithm that used longitudinal electroencephalo-
gram (EEG), electrocardiogram (ECG) and other signals’
recordings to predict patients’ outcomes after cardiac ar-
rest. A detailed description of the dataset provided by the
challenge can be found in [3].

Recent research highlights the promising brain func-
tional connectivity (FC) assessment using neuroimaging
and EEG for improving prognosis prediction in comatose
cardiac arrest survivors. FC explores the statistical depen-
dency among neural signals coming from different brain
areas [4]. For instance, Stefan et al. [5] explored EEG-
based measures to gauge consciousness and forecast out-
comes in patients with severe disorders of consciousness,
including unresponsive wakefulness syndrome and min-

imally conscious states. Connectivity metrics showed
promising results in differentiating consciousness levels
and prognostication. Also, Kustermann et al. [6] re-
ported that topological features of FC, extracted from EEG
recording during the first day of coma, sucessfully discrim-
inated long-term outcomes. Furthermore, studies of FC
using fMRI data have also supported the prognosis abil-
ity of these metrics. Sair et al. [7] demonstrated that early
MRI-based assessment of brain FC, particularly within the
default mode network, could strongly correlate with pos-
itive recovery outcomes in anoxic-ischemic encephalopa-
thy post-cardiac arrest patients. In summary, several stud-
ies in the literature point to FC measures and topologi-
cal features as potential neural correlates of comatose out-
comes.

Based on these findings, we aimed to explore EEG-
based FC methods for the extraction of relevant connectiv-
ity features coupled with machine learning for predicting
comatose outcomes at 12, 24, 48 and 72 hours from the
time of return of spontaneous circulation (ROSC).

2. Methods

In this section we present our analysis pipeline, con-
sisting in EEG signal preprocessing and feature extraction.
The selected features and patients’ data (sex, age and tar-
geted temperature management) were fed into both ran-
dom forest (RF) classifier and regressor to predict the neu-
rological outcome (good or poor) and the cerebral perfor-
mance category (CPC), respectively. Figure 1 illustrates
the developed pipeline.

2.1. EEG Signal Preprocessing

Preprocessing of EEG signals was developed to clean
the signals from high-frequency noise and utility fre-
quency interferences. A global quality index (GQI) score
was developed to identify the best 5-minutes segment of
the last available hour of recording preceding the 72nd hour
since ROSC.

For each EEG signal, a notch filter centered at the utility
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Figure 1. Overview of the developed pipeline consisting of signal preprocessing, epoch selection, FC computation based
on ciPLV, extraction of networks’ topological features and model training.

frequency was first applied, followed by a pass-band filter
with lower and upper cut-off frequencies of 0.1 and 40 Hz,
respectively. The signal was then resampled at 125 Hz (2
× high cutoff frequency to comply with Nyquist–Shannon
sampling theorem, + 45 Hz of margin) since anything
above 40 Hz was assumed as not relevant. Resampling was
performed by considering, for each new sample, the value
of the nearest original time point to every new sample’s
time point, which ensured simplicity and very high con-
version speed. This operation allowed to reduce memory
consumption of 75% without degrading the signal quality.
EEG signals were converted to the standard 18-channels
longitudinal bipolar montage for all patients.

A GQI was computed for each channel and was based
on three different quality indices. The outlier peak quality
index (QI1) was used to find high-voltage peaks due to
artifacts:

QI1(t) = max (0, |signal(t)| − 60 µV ) , (1)

where the threshold of 60 µV was empirically chosen as
the optimal threshold. The binary flat signal quality in-
dex (QI2) detected physiologically impossible flat signals:

QI2(t) = 0 if signal(t) ̸= signal(t− 1) else 1. (2)

The standard deviation quality index (QI3) detected un-
common standard deviation in a moving window: for each
sample at time t, the standard deviation std(t) of the two
seconds of signal centered at t was computed. Then,

QI3(t) = 0 if std(t) ≤ 12 µV, else 1, (3)

where the threshold of 12 µV was empirically chosen as
the optimal threshold. The GQI (Figure 2) was then de-
fined as:

GQI(t) = QI1(t) + 100QI2(t) + 100QI3(t). (4)

To find the best five minutes of recording for each chan-
nel the signal was split in adjacent 5 minutes windows,
each overlapping half of the previous one. For each win-
dow, also the 30 s before and after the window were tem-
porarily considered to provide a certain margin from any
eventual close-by disturbances. The mean GQI over the
extended window was then computed. Figure 2 shows, for
a single channel, the mean quality index over the moving
5-minutes window. The cleanest 5 minutes were then cho-
sen as the ones associated with the lowest mean GQI score
among all channels. Recordings lasting overall less than
five minutes were not considered.

Figure 2. Preprocessed EEG signal plot of patient 284
(2nd hour of recording) showing the best 5-minute record-
ing selection based on the moving average (MA) GQI
score algorithm.
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2.2. EEG features: Graph-based theory
measures

After preprocessing the signal and identifying the best
5 consecutive minutes from the last available hour of EEG
recordings, a graph was built to characterize patients’ brain
FC, and to extract features from it.

Calculating EEG functional connectivity: Two non-
linear phase synchronization (PS) metrics, weighted phase
lagging index (wPLI) [8] and corrected imaginary phase
locking value (ciPLV) [9], were defined and compared to
express the connectivity between the 18 bipolar channels.
The wPLI assesses the equiprobability of phase leads and
lags between two signals. The ciPLV estimates the dis-
tribution of phase differences, under the assumption that
two signals’ phases will evolve together if there is an
underlying connectivity between brain regions, thus the
smaller the spread the higher its strength. Both indexes
have emerged as robust measures against common source
effects, which would lead to the appearance of spurious
couplings between signals simply due to current volume
conductions through the tissues of the head [4].

The FC matrices [size:18x18] of both synchronization
metrics were computed using the spectral connectivity time
function available in the MNE-Connectivity python pack-
age [10]. We chose the Morlet mode for the time-
frequency decomposition method using a temporal win-
dow with a fixed length. The signal was decomposed into
the delta frequency band using a Chebyshev filter. The
delta frequency band (0.1 to 3.5 HZ) has been long asso-
ciated to states of diminished consciousness, and therefore
we considered it the most relevant frequency band to study
comatose states. A promising indicator of this emerged
with the findings of [11] which successfully distinguished
different consciousness states using functional connectiv-
ity in the delta-theta band. The first 18 features were com-
puted directly by averaging the FC matrix by channel. Ad-
ditionally, the weighted adjacency matrix was thresholded
using a density-based global thresholding by preserving
20% of the strongest connections. In this way, we re-
moved possible noisy links while emphasizing key topo-
logical patterns in the network.

Extracting graph-theory features: Once the adja-
cency matrices were preprocessed, the weighted graph was
obtained using igraph python library [12]. We then pro-
ceeded to compute topological features of interest. To
assess the efficiency with which patients’ brain networks
integrate information between regions, the average path
length and the global efficiency for the largest fully con-
nected subgraph were considered, which assessed how
easy it is to find the shortest path via a random walk [13].
Following, some measures of centrality such as maximum
degree value were considered to assess the number of links

corresponding to the most influential node in the network,
as well as the hub score for each channel and nodes’ be-
tweenness, which estimate how much a node falls between
many shortest paths of neighborhood nodes. To evalu-
ate networks’ clusterization, the clustering coefficient [14]
and modularity [15] were computed. The first estimates
the probability that two nodes, each directly connected
to a third node will also be directly linked to each other,
representative of functional specialization, while the latter
evaluates, after a partition of the network, the quality of
the clustering. Finally, the average connectivity for each
channel was considered [16]. This resulted in a vector
of 78 EEG features consisting of the average ciPLV for
each channel and 60 graph-based measures, both global
and channel-wise.

2.3. Random Forest Classifier and Regres-
sion Training

The dataset was split based on the hospitals data sources.
Patients from hospitals A and B were included in the train-
ing set (n=381), and patients from hospitals D, E and F
in the held-out training subset (n=226). Missing values
were imputed using a k-NN imputer (k=5). Two RF mod-
els were trained, one classifier and one regressor with the
following hyperparameters: 200 estimators and maximum
of 25 leaf nodes in each tree and a random state of 42.
These hyparameters were choose a-priori.

3. Results

In Table 1 we present the performance of the presented
models evaluated on the held-out subset of the training set.
All the illustrated scores refer to the 72h prediction task.
The ciPLV achieved higher performance on all metrics ex-
cept for the challenge score, for which wPLI attained equal
results.

Metrics wPLI ciPLV
Challenge Score 0.420 0.420

AUC-ROC 0.702 0.747
AUC-PR 0.832 0.873
Accuracy 0.677 0.721
F1-score 0.611 0.655

CPC MSE 2.895 2.706
CPC MAE 1.546 1.495

Table 1. Phase Synchronization Measures Comparison.

In Table 2 we report the results regarding the official
challenge score (true positive rate at a false positive rate of
0.05) at 72h, for our best model entry which used ciPLV as
a functional connectivity proxy.
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Training Validation Test Ranking
0.707 0.373 0.431 23/36

Table 2. Official Challenge Score.

4. Discussion and Conclusions

In this study, we present a model geared towards the pre-
diction of comatose patients’ outcome after cardiac arrest. The
approach employed graph theory to measure brain connectiv-
ity. Two methods for computing the FC matrix were compared,
and it was found that using ciPLV achieved better results. The
model displayed moderate accuracy in forecasting patient out-
comes.

Although topological characterization of brain networks
have demonstrated potential as neural correlates of conscious-
ness states, the brain network computation involves subjec-
tive metric choices, since there is no standardized pipeline or
ground truth. Moreover, depicting networks’ topology might
not be sufficient to distinguish comatose outcomes as the com-
plete dynamics of brain recovery can hardly be captured within
a specific timeframe.

In conclusion, it was demonstrated that a basic machine
learning model employing brain network properties calculated
from 5 minutes of brain delta activity can achieve a certain de-
gree of generalization. To enhance our outcomes, forthcoming
research could investigate using the brain connectivity graph as
input for a Graph Neural Network (GNN) and contemplate in-
tegrating spatial and temporal characteristics not considered in
our prevailing model.
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